
A Novel Adaptive Volterra Filter to Compensate for
Speaker Non-linearity

Tonmoy Roy∗, Parvez Ahmmed, Md. Shafiur Rahman, Abdullah Ash-Saki and A. B. M. Harun-Ur-Rashid
Department of Electrical and Electronic Engineering

Bangladesh University of Engineering and Technology, Dhaka–1205, Bangladesh
Email: ∗tonmoy roy@live.com

Abstract—The implementation of an adaptive Volterra filter to
compensate for speaker non-linearity using a pipelined recurrent
neural network based architecture is demonstrated. The proposed
architecture consists of two stages: nonlinear stage performing a
nonlinear second order Volterra (SOV) mapping from the input
space to an intermediate space and a linear combiner performing
a linear mapping from the intermediate space to the output space.
The filter design is tested by implementing it on a dataplane
processing unit configured for audio processing. The implemented
algorithm is adjusted for Xtensa Processor and uses HiFi-2 DSP
standard. The collected data confirms smaller error of the output
with the speaker and also a very low settling time.

Index Terms—Volterra, JPPSOV, Xtensa, adaptive filter, non-
linearity.

I. INTRODUCTION

The Volterra Series filter is one of the most widely used non-
linear systems. The ease with which existing linear adaptive
filters can be extended to fit this model makes it a popular non-
linear filter. The Volterra Series expansion can be interpreted
as a Taylor Series expansion with memory [1]. A major
disadvantage of the filter is the computational complexity
arising when the complete series has to be implemented. One
key reason is that the number of the Volterra coefficients
increases geometrically as the delays (or memory) and orders
increases.

There are a number of methods applied to reduce the
computational complexity. These include iterative factorization
technique [2], the fast Kalman algorithm [3], multi memory
decomposition [4]. With these strategies, the computational
complexity can be reduced significantly compared with the
SOV filter, but the stable performance is not guaranteed.
Again, in Volterra filter using the normalized least mean square
(NLMS) the output of the system becomes a nonlinear function
of the filter coefficients [5].

However, a novel architecture based on Pipelined Recurrent
Neural Network (PRNN) [6], [7] provides a more compu-
tationally efficient way to approximate non-linear systems
in a modular approach. In this Xtensa processor [8] based
implementation, the novel adaptive Joint Process filter using
Pipelined Second Order Volterra (JPPSOV) architecture is
followed. The attractive attribute of such pipelined architecture
is that the capability of such realizations to efficiently ap-
proximate nonlinear systems using less computational burdens.
Moreover, the combination of the two stages, nonlinear and
then linear, makes the output dependent on the filter coeffi-
cients linearly.

Fig. 1. Block diagram of modified adaptive Joint Process filter using Pipelined
Second Order Volterra architecture.

II. THEORY

The algorithm effectively splits the system into two subsys-
tems, one is nonlinear and the other is linear. The nonlinear
subsystem contains M number of SOV cores (Fig. 1). It per-
forms nonlinear mapping from a input space to an intermediate
space which linearizes the nonlinear signals. Each module
takes one of the external inputs and the noisy output from
the speaker as inputs. The benefit of this arrangement is in the
uniformity of numbers of inputs and outputs and the synaptic
weight matrix.

For the i-th module, the input can be written as:

Xi(n) = [Xi,1(n), Xi,2(n)] (1)

where, the column Xi,1(n) is vector of previous external input
at the n-th time point and is described by:

Xi,1(n) = x(n− i)

and Xi,2(n) contains the noisy output from the speaker,

Xi,2(n) = y(n− i)

At the n-th time point, input signal vector Xi(n) is ex-
panded to a row vector XXi(n) by the SOV series (2) where
the number of columns of the matrix is defined by L = 6
which is much less compared to (N + 1)(N + 2)/2 of the
ordinary Volterra theory.

8th International Conference on Electrical and Computer Engineering
20-22 December, 2014, Dhaka, Bangladesh

978-1-4799-4166-7/14/$31.00 ©2014 IEEE

258

XXi(n) = [XXi,1(n), XXi,2(n), . . . , XXi,L(n)]

= [1, Xi,1(n), Xi,2(n), X
2
i,1(n),

Xi,1(n)Xi,2(n), X
2
i,2(n)] (2)

Since the weight vectors are same for all the modules, the
synaptic weight vectors of the SOV series of each module is
denoted by the column vector H(n), whose length is also L.

H(n) = [h1(n), h2(n), ..., hL(n)]
T (3)

Thus, the output yi(n) of the i-th modules is defined by:

yi(n) = XXi(n)H(n) (4)

The linear subsystem simply performs a mapping from the
intermediate space to the output. The outputs of the nonlinear
subsystems are combined in a ratio provided by a weight
vector to produce an estimation of the original signal. The
weight vector is given by:

W (n) = [w1(n), w2(n), ..., wM (n)] (5)

If the outputs of the previous non-linear modules are

Y Y (n) = [y1(n), y2(n), ..., yM (n)]T (6)

the outputs of the linear subsystem would simply be the inner
products of these two vectors.

Y (n) = W (n)Y Y (n) (7)

The error between the desired signal and estimated signal
is given by

e(n) = y(n)− Y (n) (8)

Under the assumption that the coefficient vector H(n) of
the nonlinear subsection is time variant, the adaptation of
H(n) is similar to the classical case. Therefore, the normalized
least mean square (NLMS) equation driving the update of the
nonlinear subsection finally becomes

H(n+ 1) = H(n) + η2e(n)
U(n)

||U(n)||22
(9)

where U(n) is defined by,

U(n) = W (n)XXi(n)

Similarly, the NLMS equation driving the update of the
linear filter is

W (n+ 1) = W (n) + η1e(n)
Y Y (n)

||Y Y (n)||22
(10)

where ||Y Y (n)||22 is the L2 norm.
Here, η1 and η2 are the two learning rates. A necessary

condition for the mean convergence is [9],

0 < η1 < 2 and 0 < η2 < 2

The values of the learning rates are very crucial for steady
response of the filter. In this work, η1 = η1 = 1/8 is used.

TABLE I
THE VALUE OF THE NON-LINEARITY COEFFICIENTS FOR SIMULATING

DIFFERENT SPEAKERS

Co-efficient b c
Speaker-1 -0.1 0.1
Speaker-2 0.05 0.05

III. OPTIMIZATION TECHNIQUES

As illustrated in [10], the filter with only 4-5 modules
ensures lowest mean square error (MSE). As the Xtensa
processor gives an opportunity of two parallel multiplication
operation, 4 modules are used in this implementation. More-
over, the inputs of each module is also modified in order to
decrease the no. of memory operations.

According to (9), U(n) has to be divided by ||U(n)||22 and
then η1 is multiplied to obtain the change of the vector H .
The filter converges as long as 0 < η1 < 2. The performance
of the filter does not change much within this range of η1.
If η1 is kept constant on the other hand, the division result
can be allowed to vary to mimic the change of η1. Since
doing complete division using any DSP processor like Xtensa
is inefficient, the division is replaced with an efficient bit shift
operation. This bit shift can be modeled by,

q =

⌊

2�log2 a�

b

⌋

(11)

where a is the dividend, b is the divisor and q is the quotient.
It can be observed that the quotient can be off by only one
fourth of its intended value. Since η1 = 1/8, the division can
be replaced with the bit shift operation, effectively making
η1 = 1/32 in the worst case scenario.

It can be seen from (10) that, the computation of the change
of the vector W can be done in a similar manner to improve
efficiency.

IV. TEST STRATEGY

The Xtensa instruction set simulator (ISS) has been used
to test the performance of the algorithm. From the tests run
in the simulator, various performance characteristics like the
time required to process each sample and the residual error
are obtained.

The audio for the speaker input and the audio output
obtained from the microphone both are required during run-
time for the filter. Both the audios are assumed to be mono
channel with 16 kHz sampling rate and each sample was
assumed to consist of 16 bits. The errors in output are obtained
as 16-bit values as well.

For the actual testing of the adaptive filter algorithm, the
microphone input signal is modeled from the speaker input
signal. Furthermore the speaker input is considered to be non-
linearly distorted by,

z =
x+ bx2 + cx3

1 + |b|+ |c| (12)

where the non-linear terms are assumed to be less than or
equal 10% of the linear term. A random noise has also been
added to the microphone input. The noise is within 1% of the
feedback signal at most.

Using the speaker input and the modeled microphone input,
the filter is tested for various different scenarios. Three differ-
ent audio samples each 1 second in length are used to test the

259

TABLE II
THE REQUIRED CYCLES & MINIMUM PROCESSOR CLOCK SPEED FOR THE

DIFFERENT SCENARIOS

Total Cycles Minimum
Audio type Speaker cycles per clock speed

sample (MHz)

Human voice Speaker-1 17238241 1077 17.24
Speaker-2 17238871 1077 17.24

Instrumental music Speaker-1 17564397 1098 17.56
Speaker-2 17642333 1103 17.64

Periodic signal Speaker-1 17995837 1125 18.00
Speaker-2 18049309 1128 18.05

TABLE III
THE SETTLING TIME AND THE RESIDUAL NOISE AT DIFFERENT SCENARIOS

Audio type Speaker Residual Noise Settling Time
(dB) (ms)

Human voice Speaker-1 -41.0048 8.75
Speaker-2 -39.0622 7.50

Instrumental music Speaker-1 -28.7217 12.50
Speaker-2 -27.9533 9.38

Periodic signal Speaker-1 -45.1022 32.19
Speaker-2 -44.0620 25.00

filter. These audios are: human voice, instrumental music and
simple triple frequency audio. All of the audios are of 1 second
in duration. Different values of the non-linearity coefficients
in the microphone input model are tested to simulate different
speaker types. The used coefficients, b and c, are summarized
in Table I.

The processor has been configured in the built-in ‘HiFi-
2 standard’ mode [11] for the particular implementation.
In this configuration, the processor can handle audio signal
processing like multiplication and addition of 24-bit numbers
very efficiently. Hence for this implementation, the 16-bit
integers from the input are shifted left in order to convert to
24-bit. Processor’s parallel multiplication instruction is utilized
whenever possible to reduce the number of cycles required per
audio sample.

V. RESULTS AND DISCUSSION

The number of instructions required by the processor to
operate on the audio samples of 1 second and minimum clock
frequency required to do the processing in real-time is given
in Table II. Since the processor can operate at frequencies well
above the obtained minimum required clock frequency, it will
be possible to use the processor for real-time operation with
ease. As illustrated in Fig. 2, use of only four modules shows
the lowest Mean Square Error (MSE).

The average error in decibels was calculated with respect to
the input signal. As the settling time is negligible, the residual
noise was calculated as the average of all the error values
in decibel (dB). The time after which the error becomes less
or equal to the mean error was considered to be the settling
time. The mean local error vs. sample plots for the human
voice sample, music sample and the simple periodic audio
signals through different speakers are shown in Fig. 3 and
Fig. 4 respectively. Again, the settling time and the residual
noise is presented for the six scenarios in Table III.

1 2 3 4 5 6 7
−29.5

−29

−28.5

−28

−27.5

−27

−26.5

−26

−25.5

−25

−24.5

No. of Modules

M
ea

n
E

rr
or

Fig. 2. relation between the MSE and the number of modules for speaker-1.

VI. CONCLUSION

An implementation of a novel adaptive joint process filter
employing the pipelined architecture is presented in this paper.
It is seen that the algorithm can easily be implemented using
the Tensilica Xtensa dataplane processing unit. The obtained
residual error was very low and the settling time was very
small. Furthermore, size of the code and the required processor
clock speed was within desired levels for the implementation
indicating the efficiency of the algorithm.

ACKNOWLEDGMENT

The authors would like to thank Cadence Design Systems,
India for providing the software, license and samples required
for the work.

REFERENCES

[1] V. Mathews, “Adaptive polynomial filters,” IEEE Signal Processing
Magazine, vol. 8, no. 3, pp. 10–26, July 1991.

[2] T. Koh and E. Powers, “Second-order volterra filtering and its application
to nonlinear system identification,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 33, no. 6, pp. 1445–1455, Dec 1985.

[3] C. Davila, A. Welch, and I. Rylander, H., “A second-order adaptive
volterra filter with rapid convergence,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 35, no. 9, pp. 1259–1263, Sep 1987.

[4] Y. Lou, C. Nikias, and A. Venetsanopoulos, “Efficient VLSI array
processing structures for adaptive quadratic digital filters,” Circuits,
Systems and Signal Processing, vol. 7, no. 2, pp. 253–273, 1988.
[Online]. Available: http://dx.doi.org/10.1007/BF01602100

[5] T. Harada, M. Muneyasu, and T. Hinamoto, “A pipeline architecture of
quadratic adaptive volterra filters based on NLMS algorithm,” in The
IEEE International Symposium on Circuits and Systems, ISCAS, vol. 2,
May 2001, pp. 785–788.

[6] S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary
signals,” IEEE Transactions on Signal Processing, vol. 43, no. 2, pp.
526–535, Feb 1995.

[7] L. Li and S. Haykin, “A cascaded recurrent neural network for real-
time nonlinear adaptive filtering,” in IEEE International Conference on
Neural Networks, vol. 2, 1993, pp. 857–862.

[8] (2014) Xtensa customizable processors - Cadence IP. [Online]. Avail-
able: http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

[9] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice
Hall, 2002.

[10] H. Zhao and J. Zhang, “A novel adaptive nonlinear filter-based pipelined
feedforward second-order volterra architecture,” Signal Processing,
IEEE Transactions on, vol. 57, no. 1, pp. 237–246, Jan 2009.

[11] (2014) Tensilica HiFi audio voice DSP IP. [Online]. Available:
http://ip.cadence.com/ipportfolio/tensilica-ip/audio

260

0 2000 4000 6000 8000 10000 12000 14000 16000
−60

−50

−40

−30

−20

−10

0

X: 515
Y: −45

mean error = −45.1022 dB, standard deviation = 9.7987 dB

(a) periodic signal

0 2000 4000 6000 8000 10000 12000 14000 16000
−80

−70

−60

−50

−40

−30

−20

−10

0

X: 140
Y: −41

mean error = −41.0048 dB, standard deviation = 14.3588 dB

(b) human voice

0 2000 4000 6000 8000 10000 12000 14000 16000
−40

−35

−30

−25

−20

−15

−10

−5

0

X: 200
Y: −28.72

mean error = −28.7217 dB, standard deviation = 10.2721 dB

(c) instrumental music

Fig. 3. Error in speaker-1 where b = −0.1 and c = 0.1

0 2000 4000 6000 8000 10000 12000 14000 16000
−60

−50

−40

−30

−20

−10

0

X: 400
Y: −44.06

mean error = −44.062 dB, standard deviation = 9.9739 dB

(a) periodic signal

0 2000 4000 6000 8000 10000 12000 14000 16000
−80

−70

−60

−50

−40

−30

−20

−10

0

X: 120
Y: −39.06

mean error = −39.0622 dB, standard deviation = 14.1379 dB

(b) human voice

0 2000 4000 6000 8000 10000 12000 14000 16000
−40

−35

−30

−25

−20

−15

−10

−5

0

X: 150
Y: −27.95

mean error = −27.9533 dB, standard deviation = 10.2717 dB

(c) instrumental music

Fig. 4. Error in speaker-2 where b = 0.05 and c = 0.05

261

